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Approximations of functions by nonorthogonal basis functions are examined and 
criteria for best fits for several types of convergence discussed. In particular, expansions in 
Gaussian and Breit-Wigner functions are examined and some specific numerical examples 
with Gaussian functions are given, illustrating how the expansion parameters can be 
calculated analytically, rather than searching for a best fit in a multidimensional space, 
as is conventionally done. 

1. INTRODUCTION 

In many physical problems it is important to be able to approximate functions 
by sums of other functions that have predetermined desirable properties. For 
example, wavefunctions of bound state systems often are approximated by sums of 
Gaussian functions which have convenient integration properties. While the 
results of this paper are general our motivation for investigating the approximation 
of functions arises from the need to approximate wavefunctions and scattering 
amplitudes that appear in atomic, nuclear, and particle physics. The approxima- 
tions wiIl consist of imite expansions in nonorthogonal functions, with coefficients 
chosen to give a best fit. This means that it will be necessary to discuss what is meant 
by “best fit.” Section 2 will review two types of convergence often used in numerical 
analysis and show how these different criteria for a best fit lead to equations for 
determining the unknown parameters of the expansion. 

The equations for the unknown expansion parameters often turn out to be 
nonlinear equations that are themselves difficult to solve. For this reason one is 
often forced to search in a multidimensional parameter space and hope that the 
values for the parameters so obtained correspond to the true minimum. We show 
in Section 3 how one can expand in Gaussian functions in such a way as to be able 
to solve analytically for the unknown parameters, as functions of the moments of 
the function being approximated; some numerical results with simple functions are 
also given in this section. 

Since we are considering expansions in nonorthogonal basis functions it is clear 
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NONORTHOGONAL BASIS FUNCTIONS 209 

that the modulus squared of the expansion coefficients will not sum to the norm of 
the function being expanded. In particular, with the addition of new basis functions 
intruding partially into the subspaces spanned by the other basis functions, the 
expansion parameters may vary wildly with the inclusion of just a few new terms. 
This shows that it is important to be able to solve for the unknown parameters of 
the expansion in terms of the function being expanded, for only then is it possible 
to directly connect the number of terms needed in an expansion with the predeter- 
mined goodness of fit desired. 

While it is not possible to recover all the convenient features associated with 
orthogonal expansions, it is possible to find functions that are biorthogonal which 
can be used to find the expansion coefficients. The general features of biorthogonal 
sets are discussed in Section 2, where it is shown how a weak convergence criterion 
for best fit leads to sets of biorthogonal functions that can be computed with certain 
transforms. Specific transforms generating biorthogonal functions are given in 
Section 3 for Gaussian functions and in Section 4 for Breit-Wigner functions. 

2. GENERAL RESULTS 

The general mathematical problem under consideration in this paper is the 
expansion of a given function f in a set of functions fa, = fi so that 

(2.1) 
i=l 

where “N” means “approximated by” and the expansion coefficients ci are chosen 
to give the best fit. Generally the fi will depend on some parameters, as for example 
the Gaussian functions h = e-ruisz. There are two parts to this problem, the first 
being to establish criteria showing that for a given set of parameters {cQ}~=~ that f 
can be approximated as accurately as desired by letting N in Eq. (2.1) become 
sufficiently large. Once these denseness criteria are established one must deal with 
the more practical computational problem of Cnding those ci and czi , i = 1 *.. N, 
that give a best fit to the function$ We will discuss two ways of defining “best fit,” 
involving the notion of convergence in norm (strong convergence) and weak 
convergence [l]. Both definitions make use of the fact that f and {A} are elements 
of some Hilbert space X, although a rigged Hilbert space [2] will also be used when 
discussing weak convergence. 

We begin by discussing norm convergence; in this case it must first be established 
that, for a given {c+}zl and E > 0, there exists an N such that 

Ilf - jj cih //2 < E (2.2) 
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for alIfE Z. The type of norm used need not be specified at this point; it includes 
the chi-squared norm often used in computational analysis [l] as well as the norm 
defined by Ilfll’ = jz w(x) dx IfI”. w Y IS a weighting function that can be chosen (- ) . 
to improve convergence in desired regions; for simplicity w(x) is set equal to 1 in 
Sections 3 and 4. Section 3 will show what sorts of sequences {c$~=~ guarantee that 
Eq. (2.2) holds when the 5 are Gaussian functions, while in Section 4 analogous 
results will be given when thefi are Breit-Wigner types of functions. 

Assuming now that Eq. (2.2) holds, so that they< are dense in X we turn to the 
problem of computing the 2N coefficients ci and 0~~ . For simplicity it is assumed 
that both the ci and ai are real, although this condition will be relaxed in Section 4 
when dealing with Breit-Wigner functions, where the parameters are complex. It 
is also to be noted that there is no contradiction between assuming certain proper- 
ties on the (0~~)~~~ to ensure denseness and then attempting to compute the first N 
of the (Y~ ; it is the behavior of the infinite sequence of ai that determines denseness, 
and changing the first N 0~~ will not change the convergence properties of the infinite 
set. 

Thus, the criterion for a best fit in norm comes from minimizing the norm of the 
difference f - C Cif;: : 

Iif - g c,f,IIp = minimum, 

which is equivalent to 

a/ah Ilf - C cih /I4 = 0, 

k = 1 . . . N 

(2.3) 

(2.4) 

These equations define an extremum of the norm and it is necessary to check 
whether a local minimum has been obtained. This can be done either by computing 
the appropriate second derivatives or by comparing the approximate expansion with 
the function. In any event, working out the inner products gives 

(fk 3 f) = 5 (fk A) ci 
i=l 

(2.5a) 

(afkh , f) = 5 (afkih ~2 ci . 
i=l 

(2.5b) 
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Defining the N x N matrix M,,(a) = cf; ,fj), which is dependent on 0~~ and non- 
singular when the oli are distinct, gives 

ci = Lil M,-,‘c-w?2 7f)s (2.6) 

It is to be noted that M-l can be computed explicitly with the help of the Gram- 
Schmidt orthogonalization process. Thus, let the functions fi be ordered so that 
4 = Alfi 3 4 = BlZfi + Bz2.fi 7-..9 eN = Cysl &.& , where the Bij are chosen to 
make (& , &J = Sij . That is 

i=l 

flik=O,i>k, k= 1 ***N. 

It then follows that 

(2.7) 

(2.8) 

or in matrix notation /ITM/3 = I. Since both p and M are nonsingular because the 
fi are all linearly independent, it follows that 

M-l = @‘, (2.9) 

which means that M-l always can be computed analytically if the entries Mij are 
known. 

Substituting Eq. (2.6) into (2Sb) then results in a set of N equations for the 
~QdC1; 

or 

(Q(c~)$$f) = 0, k = 1 m.0 N, (2.10b) 

where P(U) is the projection operator into the finite-dimensional subspace spanned 
by the f; , while Q(a) is the projection operator into the orthogonal complement so 
that P(a) + Q(cz) = 1; as indicated by the notation both operators depend on ai . 
The result (2.1Ob) has an interesting geometrical interpretation. The best choice of 
{c+}Cl minimizing the norm Eq. (2.3) is obtained by varying the finite-dimensional 
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subspace spanned by theyi in the Hilbert space so that the component of the vector 
afJ&, orthogonal to the span off, is orthogonal tof. That is, if 

thenf,l (= Q&/Z&) should be orthogonal toffor all k = 1 ..a N. For a given set 
f;: it is of course possible to computef,L and thus arrive at a set of equations for the 
oli . But this set will usually be nonlinear in the 01~ and thus difficult to solve. 

For that reason we turn to the second type of convergence, weak convergence, 
for which denseness means that an N can be found such that 

l(f- 5 Cih, a)/* < 6, 
i=l 

(2.12) 

where again E > 0 and {cx~};=~ are given. In this case, however, another set of 
functions { ge} must also be specified. If the gG are elements of &‘, then denseness in 
norm implies denseness in the weak convergence sense. We will also be interested 
in functions g( that are not elements of .%, but rather in the rigging of .x?. For 
example in Section 3 gr will be chosen of the form xc and these function are not 
elements of .%‘. In that case the question of denseness in the weak convergence 
sense is much more delicate. 

Assuming that Eq. (2.12) holds for alIf X we again wish to find the coefficients 
ci and (Y~ that minimize I(f - 1 cifi, gE)l*. However, in this case both sets of 
partial derivatives used in Eq. (2.4) lead to equations of the form 

(J - g1 CiJ; ) a) = O, 
(2.13) 

(se,f) = f (gcAG7 
i=l 

which again define only an extremum. Since there is only one equation for both the 
ci and CX~ coefficients, it is clear that L will have to range over 2N different values in 
order to uniquely determine the 2N unknown coefficients. The big advantage of 
Eq. (2.13) over the analogous Eqs. (2.6) and (2.10) is that (g/ , f) may not depend 
on the ai . That is, the gd may be chosen so that ( gd , f) gives a set of 2N numbers 
that are fixed and do not change with new choices of oli . Section 3 will show how 
both the 0~~ and ct can be computed whenf;: = e-@’ and gc = Xc. 

A second advantage of Eq. (2.13) is that the gc can be chosen orthogonal to the 
fi , so that (fi , gk} form a biorthogonal set satisfying (fi , g,) = 0, i # k. In this 
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case the ci can be computed immediately; however, (ge , f) may then depend on 
the ai . 

It should be emphasized that the inner product used in Eq. (2.13) may contain 
a weight factor necessary to improve convergence in desired regions; also different 
sets (gc> will emphasize different regions. In Section 3 where the weighting factor is 
unity and the {ge} of the form xe, better fits for larger values of x are obtained. If 
it is important to fit small values of x accurately, a weighting factor of the form 
e-AX2 would be appropriate. 

To conclude this section we discuss a method for generating classes of biortho- 
gonal functions that can be used as the ge functions of Eq. (2.13). The method 
given generalizes a result of [3] and makes use of the assumption that there exists a 
transform Y carrying functions from 2 to the the complex plane, the kernel of 
which includes the function fi . For the Gaussian functions to be discussed in 
Section 3 the transform is the Laplace transform, while for Breit-Wigner functions 
it is the Stieltjes transform. Thus, we wish to find functions ys such that (yi ,h) = 
0, i # j by writing 

Fi(Z) = Gpi 1 (2.14) 

where 9 is the appropriate transform. If functions F,(z) can be found with zeroes 
at z = 01~) 01~ ,..., so that Fi(a/J = 0, i # k, then the transform inverse to Eq. (2.14) 
will generate a set {~)i}~Z1 that satisfies the required conditions. However, in the 
examples we have computed the v’i are not elements of X’, but of the rigging of %. 
Thus we turn briefly to how the Hilbert space structure used thus far is generalized 
to include functions not in X. Let Y denote a dense subspace of .%’ spanned by 
theL for a given {;yi}zl. Then Y C % and &“* C Y*, where “*” means dual. But 
% is its own dual so that 9’ C Z C Y*. This triplet of spaces is called a rigged 
Hilbert space [2] and makes use of the fact that forfE Y and g E 9’*, ( f, g) is well 
defined. But this is exactly what is needed in Eq. (2.13), forf, E Y, gt E Y* and for 
most applicationsfE 9, so that the inner products in (2.13) are well defined. Thus, 
as will be shown in Sections 3 and 4, Eq. (2.13) leads to well defined equations even 
when ge is in Y*. 

It is to be noted that some very delicate mathematical problems arise when the 
biorthogonal set {vi ,J> is an infinite set. Since the functions y’i are highly non- 
unique, denseness in the norm sense does not always lead to denseness in the weak 
convergence sense. For assume that two sets of functions {vi}, {qi’} both satisfy 
(vi ,J;) = (F~‘,J;:) = aijl with vi, pi’ E Y* obtained by some choices of the 
F,(Z) in Eq. (2.14). Then (F~ - yi’,fj) = 0, which means that yi - p)i are ortho- 
gonal to theh , contradicting the denseness assumption. A similar sort of problem 
arises when considering biorthogonal sets in the norm type of convergence. It 
would seem that biorthogonal functions yi could be defined as yi = M;!(~l)f, , for 
then Eq. (2.6) would read ci = (vi . f). But the problem in the infinite dimensional 
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case is that M-l = @T may not be defined because /I is an unbounded operator. 
Since we are concerned with finite subspaces these technical mathematical problems 
will not be pursued further here; rather we discuss two examples in the next sections 
showing how the general results of this section lead to easy computational results 
for fitting functions. 

3. APPROXIMATING WITH GAUSSIANS 

The use of Gaussian functions as a nonorthogonal basis set arises in a number of 
physical problems [4]. One advantage of Gaussian functions is their easy integrabi- 
lity over the whole real line. Expanding functions in a Gaussian basis set can often 
reduce a manydimensional integral to a sum of simpler terms. This feature is 
particularly useful in the calculation of many-body matrix elements where it is 
necessary to transform between different classes of center of mass variables. The 
accuracy of this technique is dependent on the goodness of the appropriate 
expansion. 

In this section we consider only Gaussian functions Gi = A of the form 

G,(x) E e-Q,* (3.1) 

as elements of the Hilbert space/E X 

llfll* = j==.= dx Ifl” < ~0. (3.2) 

For these functions the matrix M(aJ can be computed analytically, and is of the 
form 

(3.3) 

Given Mi, one can easily compute its inverse using Eq. (2.9). According to the 
Mtinti-Satz Theorem [5] the Gaussian functions are dense whenever C,“=, l/ai 
diverges. A particular case is when ai = i or when ai = ia, . Any finite set of N 
Gaussian functions can be considered a subset of a complete set since one can 
always add on the set aN+i = k + i, where k is an integer larger than aN , and 
i = 1, 2 ,..., co. 

For a given function f E X which is to be approximated by N Gaussian func- 
tions, N fixed and finite, using the norm convergence criterion for goodness of fit, 
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Eq. (2.9, the parameters {c& can be found from Eqs. (2.10) and (2.11). For the 
Gaussian functions this becomes 

(x2Gk , f> = c Ad4(Gt , f), (3.4) 
c 

where 
Jlkt(a) = 1 (x2GI,, GJ MS;’ . 

i 

This is a nonlinear equation whose solutions are usually difficult to obtain 
numerically. Not only is &(a) a complicated function of the LY( , but also the inner 
products (x2GI, ,f) and (G, , f) depend on the oli . If the 01~ could be found, it 
would of course be a straightforward problem to solve for the ci . This difficulty in 
solving Eq. (3.4) for the oli is a serious practical limitation on the method. We now 
show that the equations following from weak convergence lead to a much simpler 
procedure for finding the ai . 

Using Eq. (2.13) with gc = AZ, the expansion parameters are found by solving the 
equations 

tx”,f) = f 4x’, GA t = 0, 1, 2 ,..., 2N - 1 (3.5) 
i-l 

for both the ci and the LY<. The advantage of Eq. (3.5) over Eq. (3.4) is that cf, xd), 
the moment off with respect to 9, is independent of the expansion parameters; 
consequently, the 2N moments of the function to be approximated need to be 
calculated only once. Other functions besides Xc could be used for gt, but we will 
now show that with the choice Xc there is an explicit method for solving for the ci 
and ai . It should be noted that the inner product (f, Xc) may not always be defined 
for f E .%‘. Rather f must be an element of a dense subspace of S’, for ti is an 
element of the rigging. In practice this condition is usually met, since in most 
physical problems the functions have an asymptotic behavior of the form e-kz, so 
that the inner product is well defined. 

We make use of a variation of Proney’s method [6] to solve for the 0~~ . The 
moments of the Gaussian functions are of the form 

(3.6) 

where ai = a$/‘. Now let 

(*C f) = w + W)f 1 2 I. (3.7) 
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Equation (3.5) then becomes 

l = 0, I,..., 2N -- I. 
i=l 

(3.8) 

Define {hi} by 

N N 

E (a - ai) = C Xjd, 
j=O 

(3.9) 

this is a polynomial of degree N whose roots are the desired ai . To find the hj we 
use (3.8) and (3.9) to obtain 

(3.10) 

Thus we find 

N-l 

ifk+jAj = -f;i+N 3 k = 0, l,..., N - 1. (3.11) 

This set of N linear equations can be solved for the Xj if the matrix fk+j is 
nonsingular. However, for a given N the moments fc may result in a singular fk+j 
matrix. In such a case N must be made larger until the new fk+j matrix is no longer 
singular. Then, given the ai , and consequently the ai , the first N equations in (3.8) 
can then be used to solve for the ci ; that is, one must solve the equations 

fc = g cia:+l, 
I=1 

C = 0, I,..., N - 1. (3.12) 

The solutions of this equation can be expressed in terms of the hi and ai . Define 
{AjtI bY 

N-l 

2 Adi = Kja fil (a - a,), 

n#i 

(3.13) 

where Kj is chosen such that 

Kjaj fi (ai - a,) = 1; (3.14) 
?I=1 
ntj 
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that is, 

Kj = aj fi (ai - a,) 1 -1 
. 

?Z=l 
n#i 

(3.15) 

Given the Ajl, Cc is given by 

y Ajcfe = y A, t cia:+l = 5 ci ] ‘2 A,a:+l/ 
P=O f=O i=l i=l !=O 

= 1 cisij = cj . 
(3.16) 

Thus 

N-l 

cj = 1 Ajtft . 
I=0 

(3.17) 

To find Ajc we use (3.13) and (3.9) to write 

N-l 

(a - aj) 1 Ajeae+l = Kja N El (a - a,) = Kja 5 hpae. 
e=o f=O 

(3.18) 

This can be rewritten in the form 

fl Ag-lae+l - yg ajAga’+l = Kjfg &ae+l. 

From (3.19) one obtains the relations 

AiN- = hNKi = Kj , 

Aj/-1 - ajAg = KJp , t < N. 

(3.19) 

(3.20) 

This gives the recursion relation 

8 = 0, 1, 2 ,..., N - 2. 

One can interpret the Ajt as defining a polynomial that projects out Gi from the 
N-dimensional subspace. That is, they define biorthogonal functions yj(X): 

(3.21) 

s&/21/2-7 
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then 

We now consider a specific example to illustrate the utility of this method. Since 
it has been demonstrated [4] that Gaussian functions can approximate complicated 
oscillating bounded functions, we choose for simplicity the functionf = e-Bz, which 
is smooth and has the “wrong” behavior at the origin. Using Eq. (3.7) we find 

In Table 1 we list the (Y~ for N = 5, 10, 15 as well as E, the norm of the difference 

TABLE I 

Gaussian Parameters cq for the expansion 
of e-e for fi = 2.0 

N 5 10 15 
i E = 2.13 x lo-’ Q = 1.69 x 1O-5 E = 3.99 x IO-6 

1 0.1230144183 0.0519875157 0.0301361296 

2 0.2568384320 0.0771273312 0.0411820185 

3 0.6318974855 0.1148207757 0.0546169159 

4 2.2739798430 0.1771734293 0.0688349233 

5 21.1332263357 0.2908079533 0.0915737882 

6 0.5246383739 0.1245532619 

7 I .0940882812 0.1747226532 

8 2.8832857586 0.2554718373 

9 11.5722926611 0.3948329579 

10 121.0983765153 0.6578809088 

11 1.2174405445 

12 2.6252286703 

13 7.1884093365 

14 29.9710506086 

15 323.3605768853 
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between the true and the approximate function. From the values of E one can see 
that the expansion is converging as N increases. In practice one usually increases N 
until E is less than some desired value; this is one reason why it is necessary to have 
a fast and efficient method for determining the 01~ . 

To illustrate the pointwise convergence of the expansion we plot in Figs. 1 and 2 
the absolute value of the fractional difference between the true and the approximate 
function, 

Since this difference varies over several orders of magnitude we have plotted it on 
a logarithmic scale. From Figs. 1 and 2 one can see the Gaussian expansion oscil- 
lates about the true function and the period of this oscillation is smallest near the 
origin. As N is increased the magnitude of the error as well as its period decreases. 
The convergence is slower near the origin which is not surprising since the Gaussian 
functions have a zero slope at the origin while the exponential has a nonzero slope. 
Faster convergence at the origin could be obtained by a different choice of the 
weight function; as mentioned in Section 2 we have chosen w(x) = 1. If a weight 
function that emphasized the region near the origin were used then the expansion 

FIG. I. A = (1 e-” - 2 ci.ca8 I)/1 e-- 1 plotted for x between 1 and 10. 
,.-I 
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,$ I , , 1 , , , , , 
0 . 0.2 0.4 0.6 0.8 1.0 

X 

FIG. 2. d = (1 e-= - i cie-*iz2 1)/l e-l* j plotted for x between 0 and 1. 

would converge more slowly for large values of X. The proper choice of the weight 
function will be determined by the particular problem for which the expansion is 
to be used. 

To demonstrate the convergence of the expansion for a slightly more complicated 
function we also apply the method to the expansion of 

f = (1.0 - 0.5x) e-2x 

for N = 10. The ci and 01~ for this expansion are listed in Table II. 
One important difference between using orthogonal and nonorthogonal func- 

tions is that when using nonorthogonal functions Parseval’s equation is not satis- 
fied; consequently, one cannot use the ci as an indication of the convergence of the 
expansion. This means that as N is changed all of the ci will in general change. 

In Figs. 3 and 4 we plot the absolute value off and the absolute value of the 
difference between f and the Gaussian expansion. (Note that this difference has 
been multiplied by lo2 in order to plot it on the same graph.) Once again the 
expanded function oscillates about f with a period increasing as x increases. The 
relative errors are largest at the origin and at x = 2, wherefchanges sign. Never- 
theless, the pointwise convergence is good. and again by increasing N the error will 
decrease. 

To conclude this section we discuss other possible biorthogonal functions for 
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the Gaussian functions. When the weak convergence criterion is used the biotho- 
gonal functions are not unique. There are many functions both in the Hilbert space 
itself and in the rigged Hilbert space that are biorthogonal to the Gaussian func- 
tions. We now show how one can use the Laplace transform to find some of these 

TABLE II 

Expansion Parameters for (1.0-0.5x) e-& 

i Ci 4 

1 -0.7282206917 x 1O-8 0.0476780509 

2 -0.2490166040 x 1O-5 0.0692151582 

3 -0.1203542040 x 1O-3 0.1004217601 

4 -0.1630506231 x 1O-z 0.1499618316 

5 -0.7059997756 x 1O-2 0.2356322424 

6 0.7473219467 x 10-l 0.7627205554 

7 0.2207613552 1.7440743614 

8 0.3177433884 5.4255833881 

9 0.2747537302 3 1.0985293429 

10 0.1344389778 1206.1456524617 

FIG. 3. Ifi and lo2 I/- g tie-V* 1 plotted for x between 0 and 1. 
t-1 
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FIG. 4. / f 1 and ) f - i ~,e-~i”’ 1 plotted for x between 1 and 6. 
i-l 

functions, and we give two specific examples. The method consists of finding 
functions Fj(z) satisfying F’(oli) = 0, i # j, where F,(z) is the Laplace transform: 

F,(z) = Joa dx w(x) q+(x) e-+’ 

= dt d$ ,pj(j(t)l/2 e-zt 

= 
f 

a dt qj(t) eczt, 
0 

where 

+qt) = WP2) fPW2) 
I 2t’P ’ 

and O(X) is a weight function that is chosen to be unity in our examples. 
The simplest choice for Fj(z) is the ratio of two polynomials, i.e., let 

Fj(z) zzz w , 
Z 

(3.23) 

(3.24) 

(3.25) 
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where ZV, is a normalization constant and 

Pj(Z) = fJ (Z - a,) = Nfl Dj,Zm (3.26) 
Tl=l m=o 
?l#i 

is a polynomial of degree N - 1. Different choices of the polynomial Q(Z) lead to 
different biorthogonal functions. 

If one chooses Q(Z) = zN then 

N-l 

F,(z) = Nj C DjmZmmN = 
7Tl=O 

kil &lZk- (3.27) 

For this case 

+j(f) = 2 A,k(fl’--l/(k - l)! 
k-l 

(3.28) 

and 

vj(X) = 2 5 Ajk(X”-‘/(k - l)!). 
k-l 

(3.29) 

This is similar to the function in Eq. (3.21) except now only odd powers of x are 
used. 

A second example is obtained by choosing 

Q(z) = fi (z + 4. (3.30) 
7l=l 

Then 

From this one finds 

or 

(3.31) 

(3.32) 

Clearly there are many more possible biorthogonal functions which can be 
obtained from the Laplace transform. Depending on their application they can be 
used in Eq. (2.5) to compute the ai and Ci coefficients. 
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4. EXPANSIONS USING BREIT-WIGNER FUNCTIONS 

In the last section Gaussian functions of the form e-“~’ were used as non- 
orthogonal basis functions; in this section we will consider expansions in Breit- 
Wigner functions. Functions of the type B(h) = (.u + X)-l arise in scattering 
amplitudes, and describe unstable systems with the complex parameter h equal to 
the (dimensionless) energy + i width. Thus, by the general results of Section 2, for 
a given finite N the functionfE YP is best approximated with the sum CL, c,B(h,) 
by writing ci = x:i Mzl(Bj ) f), where 

This problem is discussed at some length in [3], where in particular the quantum 
mechanical meaning of the ci coefficients is discussed. However the sense in which 
the ci give a “best fit” was not pursued in this reference and the goal of this section 
is to elaborate somewhat more on this point. 

It should be noted that A4&’ could not be computed in reference 3 and hence 
biorthogonal functions were introduced to get around this difficulty. From Eq. (2.9) 
it is clear that M;l can be computed, once the Breit-Wigner functions are formed 
into orthonormal functions via the Gram-Schmidt process. However, the meaning 
of the biorthogonal functions in [3], Eq. (3.18) remained obscure, particularly 
because the choice was not unique. Classes of biorthogonal functions with respect 
to Breit-Wigner amplitudes can be obtained via the Stieltjes transform, in which 

(4.2) 

The functions F,(z) have a cut in the complex z plane running from 0 to - co. The 
inverse to (4.2), assuming certain growth conditions discussed in [3] are met, is 
given by 

F,(X) = Discontinuity F,,(z). (4.3) 

Thus, from the general discussion of Section 2, if F,,(z) has prescribed zeroes at 
z = A, , A, ,..., then 

F,O,) = Jr (%n(-4 W(.~ + u> = 0, m f II (4.4) 
0 

and the yrn are orthogonal to B, = (X + A,)-l. The functions yn given in [3] are 
examples of a biorthogonal set that can be used to compute the expansion coeffi- 
cients ci of Eq. (1.12). Unlike Section 2, where a procedure was given for also 
computing the parameter oli for a best fit to Gaussians, we do not pursue the 



NONORTHOGONAL BASIS FUNCTIONS 225 

analogous question for Breit-Wigner functions. The reason is that Breit-Wigner 
functions arise as approximations to scattering amplitudes, and data comes in the 
form of 1 f 12, rather than f itself, so it is necessary to use new procedures 
for obtaining the ci and hi from 1 f 12. This topic will be discussed in more detail in 
a subsequent paper. 

To conclude this section we briefly remark on the denseness of Breit-Wigner 
functions. It is clear that the Breit-Wigner functions can be made dense in #, 
simply by choosing the Xi to have an accumulation point in the complex z plane, 
say at z,, , not on the cut from 0 to - co. For assume that f is orthogonal to all the 
Breit-Wigner functions, so that (L BJ = 0, i = 1 *a* co. Then 

Vz) = Srn (f *w W(x + 3) 0 
(4.5) 

F(X,) = fin (f*(x) dx/(x + A,)) = 0. 
‘0 

But X, accumulates at z. , so that F(&) = 0 . Implies that F(z) = 0, which means f 
is zero. The fact that the Bi are dense in 2 when X, + z. is not very useful when 
trying to find an infinite biorthogonal set, for as discussed in Section 2, the vi will 
not be elements of .?P but rather the rigging of 2. This is clear from the example 
worked out in [3]. For approximating functions with a finite number of Breit- 
Wigner functions, the Stieltjes transform can be used to generate gd that are 
orthogonal to the Bi ; however, we have not found functions F,(z) having the 
property that the inner products (v,, ,f) are independent of X, as was the case for 
Gaussians and the moments ge = xe of Section 3. 

5. CONCLUSION 

We have shown how the use of the weak convergence criterion for the “best” 
approximation can lead to new methods of finding biorthogonal functions by the 
use of appropriate transforms. Specific examples were given for the Gaussian 
functions using the Laplace transform and for the Breit-Wigner functions using 
the Stieltjes transform. In addition it was shown how the weak convergence 
criterion can be used to find techniques for determining expansion parameters. An 
explicit example was carried out for expansions using Gaussian functions, where 
the moments of the function to be expanded could be used to obtain the ci and 
the 01~ . This technique is much more efficient than chi-squared techniques, for in 
a chi-squared search in the multidimensional space of the 01~ it is difficult to deter- 
mine when the true minimum has been found, while in the technique presented in 
Section 2 the 01~ for the “best” approximation come directly from the solution of a 
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well-defined set of equations. Therefore, for a fixed value of N our technique gives 
a unique best approximation. This is a useful computational feature since one 
usually increases N until a desired goodness of fit is obtained. 

Finally, we have shown by the expansion in Gaussian functions of two different 
functions how well and how quickly convergence is attained. In both examples 
good fits were obtained with very little computer time; as discussed in Sections 2 
and 3, even better fits could be obtained near the origin by including appropriate 
weighting functions. 

It remains to analyze infinite expansions in the weak convergence sense when the 
gt are not in X’. As discussed in Section 2 some very delicate mathematical problems 
appear, having to do with unbounded operators and choices of (01~)~~~ that allow 
for the existence of infinite biorthogonal sets. But for finite expansions we have 
shown how different sets of qi can be generated via appropriate transforms, sets 
that should be useful depending on the desired application. 
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